Publicación:
Day-Ahead Electricity Demand Forecasting Using a Novel Decomposition Combination Method

dc.contributor.authorIftikhar, Hasnain
dc.contributor.authorTurpo-Chaparro, Josué Edison
dc.contributor.authorCanas Rodrigues, Paulo
dc.contributor.authorLópez-Gonzales, Javier Linkolk
dc.date.accessioned2025-09-05T16:33:17Z
dc.description.abstractIn the present liberalized energy markets, electricity demand forecasting is critical for planning of generation capacity and required resources. An accurate and efficient electricity demand forecast can reduce the risk of power outages and excessive power generation. Avoiding blackouts is crucial for economic growth, and electricity is an essential energy source for industry. Considering these facts, this study presents a detailed analysis of the forecast of hourly electricity demand by comparing novel decomposition methods with several univariate and multivariate time series models. To that end, we use the three proposed decomposition methods to divide the electricity demand time series into the following subseries: a long-run linear trend, a seasonal trend, and a stochastic trend. Next, each subseries is forecast using all conceivable combinations of univariate and multivariate time series models. Finally, the multiple forecasting models are immediately integrated to provide a final one-day-ahead electricity demand forecast. The presented modeling and forecasting technique is implemented for the Nord Pool electricity market’s hourly electricity demand. Three accuracy indicators, a statistical test, and a graphical analysis are used to assess the performance of the proposed decomposition combination forecasting technique. Hence, the forecasting results demonstrate the efficiency and precision of the proposed decomposition combination forecasting technique. In addition, the final best combination model within the proposed forecasting framework is comparatively better than the best models proposed in the literature and standard benchmark models. Finally, we suggest that the decomposition combination forecasting approach developed in this study be employed to handle additional complicated power market forecasting challenges. © 2023 Elsevier B.V., All rights reserved.
dc.identifier.doi10.3390/en16186675
dc.identifier.scopus2-s2.0-85172719692
dc.identifier.urihttps://cris.uwiener.edu.pe/handle/001/309
dc.identifier.uuidbb016f3a-823a-4708-be37-c4cfc3c9a65c
dc.language.isoen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.citationissue18
dc.relation.citationvolume16
dc.relation.ispartofseriesEnergies
dc.relation.issn19961073
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDay-Ahead Electricity Demand Forecasting Using a Novel Decomposition Combination Method
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dspace.entity.typePublication

Archivos

Colecciones